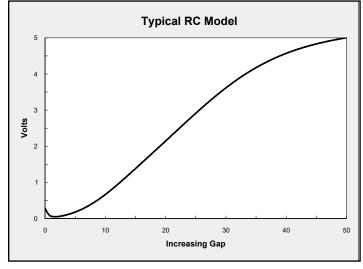
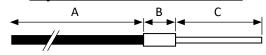
Fiberoptic Sensor - Reflectance Compensated*

Model RC171

Fiberoptic Cable & Sensor Tip - Actual Size



For The Measurement of Distance, Displacement and Vibration for Targets $> \emptyset$ 4.34 mm


Features

- Reflectance Compensated Output
- 4.3 mm Diameter Spot Size
- 12.7 mm Operating Range
- 0.5 mv/μm Sensitivity (12 mv/mil)
- Ambient Light Rejection

Tip & Cable Dimensions

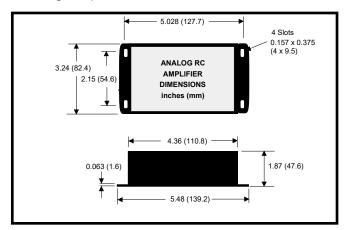
FEATURE	mm	inch
Tip Outer Diameter, Ø C	4.75	0.187
Fiberoptic Diameter	4.34	0.171
Tip Length, C	38.1	1.5
Collar Length, B	15.9	0.625
Collar Diameter, Ø B	7.92	0.312
Cable Length, A	915	36
Cable Diameter, Ø A	6.86	0.275
Cable Min. Bend Radius	29	1.125

AMBIENT LIGHT REJECTION

Incoming light signals are bandpass filtered at a wavelength of 850 ±50 nm.

REFLECTANCE COMPENSATION

These are reflective type transducers based upon detecting the intensity of reflected light. RC Model sensors have a pair of fiberoptic detectors in the sensor tip. Light reflected off a target follows two separate paths back to the electronics where a ratiometric calculation provides the distance measurement which is independent of varying surface reflectance; i.e., *reflectance compensated*.


www.philtec.com

A nalog sensors are fast responding units ideal for process control and vibration measurements in dynamic applications:

- DC-20 KHz bandwidth is standard
- DC-200 KHz or higher (up to 350 KHz) is optional
- DC-100 Hz providing best resolution, is optional

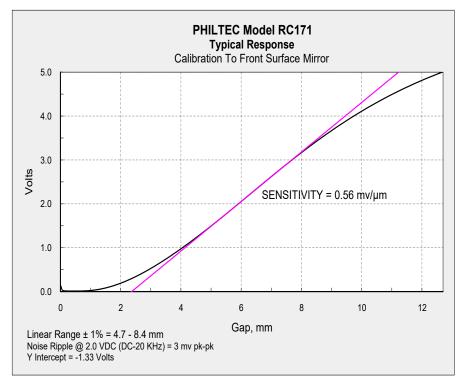
Standard single channel units include amplifier and sensor tip with 914 mm long (3 foot) fiberoptic cable, require +12 VDC input power, and provide 0 to +5 volt analog output with DC - 20 KHz bandwidth.

SENSOR TIP ALIGNMENT

RC sensors have adjacent fiber bundles in the face of the sensor. An alignment flat is provided on the casing to aid with alignment. The flat is ground parallel to the split between the adjacent fiberoptic bundles, and located on the light transmitting side.

Standard Specifications - RC171							
Electronics Fibe		eroptics	Analog Output (0-5 Volts)				
Light Source	LED, 850 nm	Light Beam Spread	25°	Total Range	0.500 in.	12.7 mm	
Input Voltage	+12 VDC	Tip Material	300 Series SS	Linear Range*	0.150 in.	3.8 mm	
Input Current	125 ma max	Tip Epoxy Outgas	0.3% @ 200°C 2.4% @ 300°C	Nominal Standoff*	0.175 in.	4.4 mm	
Bandwidth	DC-20 KHz 3 db down	Tip Operating Pressure	15 bar	Nominal Sensitivity*	12 mv/mil	0.5 mv/μm	
Iso-thermal Drift	0.5%	Tip Operating Temperature	-55 to 200°C continuous; to 300°C intermittent 1-2 hours	Resolution** DC - 200 KHz DC - 20 KHz DC - 100 Hz	440 μin 220 μin 50 μin	11 μm 5.6 μm 1.3 μm	
Operating Temperature	0 to 70°C	Cable Jacket PVC over Steel Monocoil	10 to 107°C				
Weight	0.7 kg -1.5 lbs.						

NOTE: Nominal Standoff = the gap distance that places the sensor at the middle of the linear operating range.


^{*}Standard Specifications provide nominal values only. Actual production values may vary by as much as ±15%.

^{**}These specifications represent best case performance where:
the target is flat, smooth and highly reflective,
the sensor is perpendicular to the target,
the sensor is gapped to its range of highest sensitivity,
fiberoptic cable lengths are standard and the cable is not connectorized.

CONVERTING THE ANALOG OUTPUT TO DISTANCE

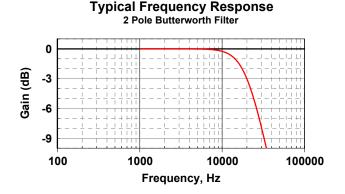
A calibration chart is provided with each sensor giving the voltage output response to distance. There are three ways to derive accurate distance measurements:

- a) within the bounds of the linear range, convert the change in voltage output as follows: Distance = Δ milliVolts ÷ Sensitivity = μ m
- b) over the non-linear range, create a lookup table using the XY calibration data points, or
- c) use a polynomial curve fit to accurately map the sensor's output function

FACTORY CALIBRATION

A factory supplied calibration chart provides:

- Sensor model & serial number
- Date of calibration
- The linear sensing range
- The slope sensitivity
- The y intercept of the linear range
- The AC noise ripple


The XY calibration data points are made available upon request.

FREQUENCY RESPONSE

The standard 20 KHz RC sensor has a 2-pole butterworth frequency rolloff. The chart here shows that typical response. With the 3 db down point set at 20 KHz, the output is flat out to approximately 6 KHz.

With a high frequency amplifier, the 3 db down point is set at 200 KHz or higher (up to 350 Hz).

With a low frequency amplifier, the 3 db down point is set at 100 Hz

