Analog Sensor Data Sheet PHILTEC, Inc.

Aug 2019

Fiberoptic Sensor - *Reflectance Dependent**

Model D171

For The Measurement of Distance, Displacement and Vibration of Targets > Ø 4.4 mm

Features

5

2

1

Volts ∘

- Reflectance Dependent Output
- Ambient Light Rejection

OPTICAL PEAK

NEAR SIDE

• Ø 4.35 mm Target Spot Size (0.171 inch)

TYPICAL D MODEL

FAR SIDE

Increasing Gap >>>

- 50 mm Total Operating Range
- 330 mv/mm Far Side Sensitivity

TIP & Cable Dimensions						
FEATURE	mm	inch				
Tip Outer Diameter, Ø C	4.75	0.187				
Fiberoptic Diameter	4.34	0.171				
Tip Length, C	76.2	3				
Collar Length, B	15.9	0.625				
Collar Diameter, Ø B	7.92	0.312				
Cable Length, A	914	36				
Cable Diameter, Ø A	6.86	0.27				
Cable Min. Bend Radius	25.4	1				

Tin & Cable Dimensions

The Far Side output function starts at the maximum output voltage referred to as the OPTICAL PEAK. The amplitude of the output is proportional to the reflectivity of the target surface. A factory calibration is provided with the Optical Peak set to 5.000 volts. A gain control is provided for calibration of the sensor output to 5 volts for various target surfaces.

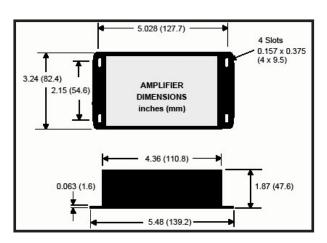
*These are reflective type transducers based upon detecting the intensity of reflected light. The output is proportional to:

- distance between the sensor tip and target; and,
- the reflectivity of the target surface.

D models are commonly used in applications where the target reflectivity stays constant; i.e., the target has a reciprocating or vibratory motion parallel to the axis of the sensor.

AMBIENT LIGHT REJECTION

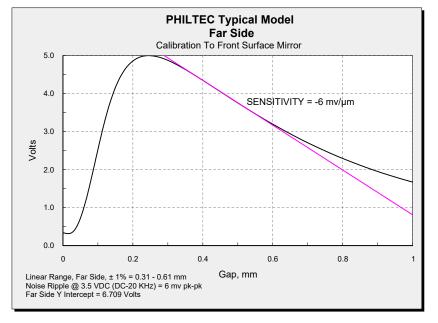
Incoming light signals are bandpass filtered at a wavelength of 850 ±22 nm.



www.philtec.com

Analog sensors are fast responding units ideal for process control and vibration measurements in dynamic applications:

- DC-20 KHz bandwidth is standard
- DC-200 KHz or higher (up to 2 MHz) is optional
- DC-100 Hz providing best resolution, is optional


Standard single channel units include amplifier and sensor tip with 914 mm long (3 foot) fiberoptic cable, require +12 VDC input power, and provide 0 to +5 volt analog output with DC - 20 KHz bandwidth.

CONVERTING THE ANALOG OUTPUT TO DISTANCE

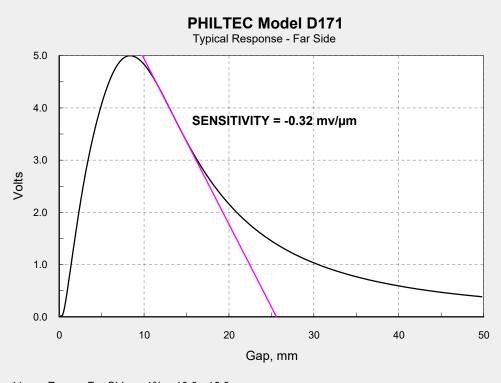
A calibration chart is provided with each sensor giving the voltage output response to distance. There are three ways to derive accurate distance measurements:

- a) within the bounds of the linear range, convert the change in voltage output as follows: Distance = Δ milliVolts ÷ Sensitivity = μ m
- b) over the non-linear range, create a lookup table using the XY calibration data points, or

c) use a polynomial curve fit to accurately map the sensor's output function

Standard Enclosure for D Models

FACTORY CALIBRATIONS


Calibration charts are provided for Near and Far Side regions. A typical factory supplied calibration chart provides:

- Sensor model & serial number
- Date of calibration
- The linear sensing range
- The slope sensitivity
- The y intercept of the linear range
- The AC noise ripple

The XY calibration data points are made available upon request.

END USER CALIBRATION

The effect of changing target reflectance is to shift the voltage output higher or lower. Factory calibrations have the Peak Voltage set to 5.000 volts. A gain control is provided for calibration of the sensor output to various target surfaces. In-situ calibration is performed simply, by adjusting the sensor's tip-to-target gap until the peak output voltage is attained, and then by using the gain control to set the peak voltage to full scale (5.000 volts). After setting the peak to 5 volts, the factory gap calibration chart applies for the target being measured. This procedure allows the sensor to be used to perform precision linear motion measurements on most materials.

1 μm = 39.37 μinch 1 mm = 39.37 mils

1 mil = 0.001 inch 1 mil = 25.4 μm

1 mil = 0.0254 mm

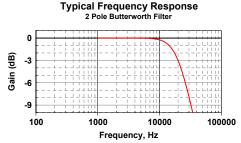
Linear Range,	Far Side, ±	: 1% = 10.6 -	16.0 mm
---------------	-------------	---------------	---------

Standard Specifications - D171 Far Side							
Electi	Electronics Fiberoptics		Analog Output (0-5 Volts)				
Light Source	LED, 850 nm	Light Beam Spread	25°	Total Range	1.6 in.	40.5 mm	
Input Voltage	+12 to +24 VDC	Tip Material	300 Series SS	Linear Range*	0.25 in.	6.3 mm	
Input Current	125 ma max	Tip Epoxy Outgas	0.3% @ 200°C 2.4% @ 300°C	Nominal Standoff*	0.55 in.	14 mm	
Bandwidth	DC-20 KHz 3 db down	Tip Operating Pressure	15 bar	Nominal Sensitivity*	7.4 mv/mil	330 mv/mm	
lsothermal Drift	0.5%	Tip Operating Temperature	-55 to 200°C continuous; to 300°C intermittent 1-2 hours	<u>Resolution</u> ** DC - 200 KHz DC - 20 KHz DC - 100 Hz	600 μin 275 μin 100 μin	16 μm 8 μm 2.8 μm	
Operating Temperature	0 to 70°C	Cable Operating Temperature	10 to 107°C				
Weight	0.7 kg - 1.5 lbs.	Cable Jacket	PVC over Steel Monocoil				

NOTE: *Nominal Standoff = the gap (distance) that places the sensor at the middle of the linear operating range.* *Standard Specifications provide nominal values only. Actual production values may vary by as much as ±15%.

**These specifications represent best case performance where:

the target is flat, smooth and highly reflective,


the sensor is perpendicular to the target,

the sensor is gapped to its range of highest sensitivity,

fiberoptic cable lengths are standard and the cable is not connectorized.

FREQUENCY RESPONSE

The standard D sensor has a 20 KHz 2-pole butterworth frequency rolloff. With the 3 db down point set at 20 KHz, the output is flat out to approximately 6 KHz.

